Chemicobiological Deciphering the Protein-Binding Details of Aspirin

نویسندگان

  • Hang-Xing Xiong
  • Hong-Lin Wang
  • Hua-Xin Zhang
  • Li-Wei Li
چکیده

Fluorescence quenching and fluorescence resonance energy transfer (FRET) theories are widely used in drug-protein binding study, but the inner filter effect is not always being corrected, which may cause inaccurate results. In view of this, the interaction of aspirin (ASP) with human serum albumin (HSA) was studied by three-dimensional fluorescence spectra, ultraviolet spectra, circular dichroism (CD) spectra, and molecular modeling methods. The inner effect was subtracted from raw data of the fluorescence when evaluating the number of binding sites, equilibrium constants, and thermodynamic parameters. The results showed that only one binding site formed on HSA and it obviously impaired by increasing temperature. The negative Gibbs free energy change (Gθ) suggested the binding was spontaneous. Meanwhile, negative enthalpy change (Hθ) and entropy change (Sθ) indicated hydrogen bonds had an important influence in the formation of ASP-HSA complex. The distance between donor and acceptor was calculated according to Förster’s non-radiation resonance energy transfer theory using the corrected fluorescence data. Synchronous spectra implied the polarity of tryptophan residue increased, which gave a clue to binding location. CD spectra were employed to detect the secondary structural changes of HSA. Based on experimental results, molecular modeling was carried out to calculate the most optimized docking mode, in which both panorama and details were involved. Received date: 04/04/2016 Accepted date: 22/04/2016 Published date: 28/04/2016

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation the Mechanism of Interaction between Inhibitor ALISERTIB with Protein Kinase A and B Using Modeling, Docking and Molecular Dynamics Simulation

The high level of conservation in ATP-binding sites of protein kinases increasingly demandsthe quest to find selective inhibitors with little cross reactivity. Kinase kinases are a recently discovered group of Kinases found to be involved in several mitotic events. These proteins represent attractive targets for cancer therapy with several small molecule inhibitors undergoing different ph...

متن کامل

Impact of Aspirin Eugenol Ester on Cyclooxygenase-1,Cyclooxygenase-2,C-reactive protein,Prothrombin and Arachidonate 5-lipoxygenase in Healthy Rats

Aspirin eugenol ester (AEE) is a promising drug candidate, which is used for the treatment of inflammation, pain and fever and the prevention of cardiovascular diseases. This study focuses on the effect of AEE on five proteins which are related to inflammation and thrombosis, including cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), C-reactive protein (CRP), prothrombin (FII) and arachidona...

متن کامل

In-Vitro Study of Dipyridamole–Propranolol Interaction in Protein Binding in the Absence and Presence of Nicotine

       The binding of drugs by plasma proteins is an important phenomenon, because it influences the size of the free fraction of the drugs in plasma. In this study the influence of dipyridamole (DP) on the protein binding of propranolol (PL) and PL on the protein binding of DP were studied alone and in the presence of nicotine (NC).        The equilibrium dialysis was employed for protein bin...

متن کامل

Impact of Aspirin Eugenol Ester on Cyclooxygenase-1,Cyclooxygenase-2,C-reactive protein,Prothrombin and Arachidonate 5-lipoxygenase in Healthy Rats

Aspirin eugenol ester (AEE) is a promising drug candidate, which is used for the treatment of inflammation, pain and fever and the prevention of cardiovascular diseases. This study focuses on the effect of AEE on five proteins which are related to inflammation and thrombosis, including cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), C-reactive protein (CRP), prothrombin (FII) and arachidona...

متن کامل

Deciphering the Stepwise Binding Mode of HRG1β to HER3 by Surface Plasmon Resonance and Interaction Map

For the development of efficient anti-cancer therapeutics against the HER receptor family it is indispensable to understand the mechanistic model of the HER receptor activation upon ligand binding. Due to its high complexity the binding mode of Heregulin 1 beta (HRG1β) with its receptor HER3 is so far not understood. Analysis of the interaction of HRG1β with surface immobilized HER3 extracellul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016